
P.S.C & K.V.S.C GOVERNMENT COLLEGE NANDYAL

DEPARTMENT OF PHYSICS

PO-CO MAPPING

Course Code: P1: Mechanics, Waves and Oscillations

	Upon completion of this course, the student will be able to	PSOs	POs
CO 1	To understand Newton's laws of Motion, motion of a rocket, Rutherford scattering, Euler equations, Analysis of precessional velocity of symmetric top	1,3	1,2,7,8
CO 2	Basic understanding of central force with examples. Derivation of Kepler's laws	1,2,3	1,2,4
CO 3	To understand the concepts of inertial and non-inertial frames. Lorentz transformations, length contraction & time dilation	1,2,3	3,4,7
CO 4	To understand simple and damped harmonic oscillator, Forced harmonic oscillator, Relaxation time and Quality factor. Coupled oscillator and wave equation of motion.	1,2,3'5	1,4,7
CO 5	To understand the transverse vibrations in a string. Laws of vibrations in a string. To understand different methods of production of ultrasonic's & their applications	1,2,3,5	4,5,6,7

MAPPING OF COs WITH PSOs & POs

Course Code: P2: Wave Optics

	Upon completion of this course, the student will be able to:	PSOs	POs
CO 1	To understand aberration & methods of minimizing aberration.	1,2,3	1,2,7
	Concepts of Coma, Astigmatism ,To understand different types of fibers		
	& principle of fiber communication		
CO 2	To understand principle of superposition. Basic understanding of	1,3,5	1,2,4
	conditions of interference of light, Interference in thin films, Lloyd's		
	single mirror, Newton's rings, Michelson interferometer		ALC: N
CO 3	To understand types of diffraction and differences between them,	1,3,5	3,4,7
	Fraunhoffer diffraction at a single slit, Diffraction grating, Resolving		
- 4	power of grating.		
CO 4	Understanding polarization and different methods of producing	1,2,3	1,3 ,7
, e	polarized light. Nicol prism & Double refraction ,Quarter and half wave	2	
	plate, Laurent's half shade polarimeter, Basic principle of LCDs.		
CO 5	To understand different types of fibers &principle of fiber	1,4,5	1,4, 6,7
	communication Basic principle of LASER, Applications of lasers.		
	Basic principle of holography and its applications		

Course Code: P1: Mechanics, Waves and Oscillations

	Upon completion of this course, the student will be able to	PSOs	POs
CO 1	To understand Newton's laws of Motion, motion of a rocket, Rutherford scattering, Euler equations, Analysis of precessional velocity of symmetric top	1,3	1,2,7,8
CO 2	Basic understanding of central force with examples. Derivation of Kepler's laws	1,2,3	1,2,4
CO 3	To understand the concepts of inertial and non-inertial frames. Lorentz transformations, length contraction & time dilation	1,2,3	3,4,7
CO 4	To understand simple and damped harmonic oscillator, Forced harmonic oscillator, Relaxation time and Quality factor. Coupled oscillator and wave equation of motion.	1,2,3'5	1,4,7
CO 5	To understand the transverse vibrations in a string. Laws of vibrations in a string. To understand different methods of production of ultrasonic's & their applications	1,2,3,5	4,5,6,7

MAPPING OF COs WITH PSOs & POs

Course Code: P2: Wave Optics

	Upon completion of this course, the student will be able to:	PSOs	POs
CO 1	To understand aberration & methods of minimizing aberration.	1,2,3	1,2,7
	Concepts of Coma, Astigmatism ,To understand different types of fibers		
	& principle of fiber communication		1
CO 2	To understand principle of superposition. Basic understanding of	1,3,5	1,2,4
	conditions of interference of light, Interference in thin films, Lloyd's		
	single mirror, Newton's rings, Michelson interferometer		
CO 3	To understand types of diffraction and differences between them,	1,3,5	3,4,7
	Fraunhoffer diffraction at a single slit, Diffraction grating, Resolving		
	power of grating.		
CO 4	Understanding polarization and different methods of producing	1,2,3	1,3 ,7
	polarized light. Nicol prism & Double refraction, Quarter and half wave		
	plate, Laurent's half shade polarimeter, Basic principle of LCDs.		
CO 5	To understand different types of fibers &principle of fiber	1,4,5	1,4, 6,7
003	communication Basic principle of LASER, Applications of lasers.		
	Basic principle of holography and its applications		
	Rasic bullicible of Holography arrange in		

MAPPING OF COS WITH PSOS & POS

Course Code: P3: Heat & Thermodynamics

	Upon completion of this course, the student will be able to:	PSOs	POs
CO 1	To understand concept of Thermodynamics and the kinetic theory of	1,2,3	1,2,7
	gases.		
CO 2	To understand Carnot's engine & its efficiency.	1,3,5	1,2,4
	II law of Thermodynamics. Concepts of Entropy & use of T-S diagrams		
CO 3	To understand the derivation of Maxwell's thermodynamic relations.	1,3,5	3,4,7
	Importance of specific heat of gases. Joule Kelvin effect		
CO 4	To understand the concept of low temperature physics. Various	1,2,3	1,3 ,7
	experiments related to low temperature physics. To understand		
	Adiabatic demagnetization,		
CO 5	To get the idea of various laws of quantum theory of radiation.	1,4,5	1,4, 6,7
	Measurement of temperature of sun using pyrometers		

MAPPING OF COs WITH PSOs & POs

Course Code: P4: Electricity, Magnetism & Electronics

	Upon completion of this course, the student will be able to:	PSOs	POs
CO 1	To understand Gauss' law in electrostatics and its application.	1,2,3	1,2,7
	Uses of dielectrics. Importance of electric polarization.	and the second	
CO 2	Application of Biot-Savart's Law &to understand Hall effect. Basic	1,3,5	1,2,4
	concept of Faraday's &Lenz's laws. Understanding of self &mutual	-	
	inductance. Working of Transformer		
CO 3	To understand the effect of AC current through pure resistance,	1,3,5	3,4,7
	capacitance &inductance & in combination. Importance of Q factor.		
	To understand the fundamental Maxwell's equations & Poynting		- 10VS
	theorem.		
CO 4	understanding of PN junction & Zener diode &LED characteristics	1,2,3	1,3 ,7
	To understand CB, CE, CC configurations of a transistor.		
	Determination of h parameters.		
CO 5	To understand digital electronics concepts. Conversion of binary to	1,4,5	1,4,6,7
	decimal, hexa & octal systems & vice versa. Importance of De Morgan's		
	theorem in digital electronics. Half &full adder circuits, construction.		

Course Code: P3: Heat & Thermodynamics

	Upon completion of this course, the student will be able to:	PSOs	POs
CO 1	To understand concept of Thermodynamics and the kinetic theory of	1,2,3	1,2,7
	gases.		
CO 2	To understand Carnot's engine & its efficiency.	1,3,5	1,2,4
	II law of Thermodynamics. Concepts of Entropy & use of T-S diagrams		
CO 3	To understand the derivation of Maxwell's thermodynamic relations.	1,3,5	3,4,7
	Importance of specific heat of gases. Joule Kelvin effect		
CO 4	To understand the concept of low temperature physics. Various	1,2,3	1,3 ,7
	experiments related to low temperature physics. To understand		
	Adiabatic demagnetization,		
CO 5	To get the idea of various laws of quantum theory of radiation.	1,4,5	1,4, 6,7
	Measurement of temperature of sun using pyrometers		

MAPPING OF COs WITH PSOs & POs

Course Code: P4: Electricity, Magnetism & Electronics

	Upon completion of this course, the student will be able to:	PSOs	POs
CO 1	To understand Gauss' law in electrostatics and its application.	1,2,3	1,2,7
	Uses of dielectrics. Importance of electric polarization.		
CO 2	Application of Biot-Savart's Law &to understand Hall effect. Basic	1,3,5	1,2,4
	concept of Faraday's &Lenz's laws. Understanding of self &mutual		
	inductance. Working of Transformer		
CO 3	To understand the effect of AC current through pure resistance,	1,3,5	3,4,7
	capacitance &inductance & in combination. Importance of Q factor.	,,,,,	,,,,
	To understand the fundamental Maxwell's equations & Poynting		
	theorem.		
CO 4	understanding of PN junction & Zener diode &LED characteristics	1,2,3	127
	To understand CB, CE, CC configurations of a transistor.	1,2,3	1,3 ,7
	Determination of h parameters.		
CO 5	To understand digital electronics concepts. Conversion of binary to	1 4 5	
	decimal, hexa & octal systems & vice versa. Importance of De Morgan's	1,4,5	1,4, 6,7
	theorem in digital electronics. Half &full adder circuits, construction.		

Course Code: P5: Modern Physics

	Upon completion of this course, the student will be able to:		-
CO ₁	To understand quantum numbers associated with vector atom model	PSOs	POs
	To know sounding ask	1,2,3	1,2,7
	To know coupling schemes. Importance of Raman effect& its		
	experimental setup. Applications of Raman effect		
CO 2	To understand matter waves, De-Broglie's theory of mater waves.	1,3,5	1,2,4
	Heisenberg's uncertainty principle & experimental verification.	1,5,5	1,2,4
CO 3	To understand the postulates of quantum mechanics,	1,3,5	3,4,7
	Applications of Schrodinger wave equation in various cases.	1,5,5	3,4,7
CO 4	To know Basic properties of nucleus. Understanding of liquid drop	1,2,3	1,3 ,7
	model &shell model. To get the idea of Alpha Beta decay & various	' '	, , , , ,
	theories. Neutrino hypothesis.		
CO 5	To understand the basics of Nano materials & its classification	1,4,5	1,4, 6,7
	Applications of nano materials. To understand concept of		
	superconductivity, types of superconductors & its applications.		

MAPPING OF COs WITH PSOs & POs

Course Code: 6B: Low Temperature Physics & Refrigeration

	Upon completion of this course, the student will be able to:	PSOs	POs
CO 1	Identify various methods and techniques used to produce low temperatures in the Laboratory.	1,2,3	1,2,7
CO 2	Acquire a critical knowledge on refrigeration and air conditioning	1,3,5	1,2,4
CO 3	Demonstrate skills of Refrigerators through hands on experience and learns about refrigeration components and their accessories.	1,3,5	3,4,7
CO 4	Understand the classification, properties of refrigerants and their effects on environment	1,2,3	1,3 ,7
CO 5	Comprehend the applications of Low Temperature Physics and refrigeration.	1,4,5	1,4, 6,7

Course Code: 7B: Solar Energy and Applications

	Upon completion of this course, the student will be able to:	PSOs	POs
CO 1	Understand Sun structure, forms of energy coming from the Sun and its measurement.	1,2,3	1,2,7
CO 2	Acquire a critical knowledge on the working of thermal and photovoltaic collectors.	1,3,5	1,2,4
CO3	Demonstrate skills related to callus culture through hands on experience	1,3,5	3,4,7
CO 4	Understand testing procedures and fault analysis of thermal collectors and PV modules.	1,2,3	1,3 ,7
CO 5	Comprehend applications of thermal collectors and PV modules.	1,4,5	1,4, 6,7

MAPPING OF COs WITH PSOs & POs

Course Code: 6C: Application of Electricity & Electronics

	Upon completion of this course, the student will be able to:	PSOs	POs
CO 1	Identify various components present in Electricity & Electronics Laboratory	1,2,3	1,2,7
CO 2	Acquire a critical knowledge of each component and its utility (like resistors, capacitors, inductors, power sources etc.).	1,3,5	1,2,4
CO 3	Demonstrate skills of constructing simple electronic circuits consisting of basic circuit elements	1,3,5	3,4,7
CO 4	Understand the need & Functionality of various DC & AC Power source	1,2,3	1,3 ,7
CO 5	Comprehend the design, applications and practices of various electrical & Electronic devices and also their trouble shooting.	1,4,5	1,4, 6,7

Course Code: 7C: Application of Electricity & Electronics

Upon	completion of this course, the student will be able to:	PSOs	POs
CO 1	Identify various facilities required to set up a basic Instrumentation Laboratory	1,2,3	1,2,7
CO 2	Acquire a critical knowledge of various Electrical Instruments used in the Laboratory.	1,3,5	1,2,4
CO 3	Demonstrate skills of using instruments like CRO, Function Generator, Multimeter etc. through hands on experience.	1,3,5	3,4,7
CO 4	Understand the Principle and operation of different display devices used in the display systems and different transducers	1,2,3	1,3 ,7
CO 5	Comprehend the applications of various biomedical instruments in daily life like B.P. meter, ECG, Pulse oxymeter etc. and know the handling procedures with safety and security.	1,4,5	1,4, 6,7

PRINCIPAL

PSC & KVSC Government Collage
NANDYAL, Nandyal (Dt.), A.P.